1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! A first-in-first-out bytes ring-buffer like kfifo in Linux.
//!
//! # Example
//!
//! ```
//! use std::io::prelude::*;
//! use fifo::{fifo, Sender, Receiver};
//!
//! let (mut sender, mut receiver): (Sender, Receiver) = fifo(128);
//!
//! let bytes_to_write = [0 as u8; 512];
//! assert_eq!(sender.write(&bytes_to_write).unwrap(), 128);
//!
//! let mut bytes_to_read = [1 as u8; 512];
//! assert_eq!(receiver.read(&mut bytes_to_read).unwrap(), 128);
//!
//! assert_eq!(bytes_to_write[0..128], bytes_to_read[0..128]);
//!
//! assert!(sender.as_ref().unread() >= 0);
//! ```
#![feature(alloc, heap_api)]
#![feature(optin_builtin_traits)]
extern crate alloc;
mod shutdown;
pub mod splice;
use std::{io, slice, thread, time};
use std::cmp::min;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use alloc::heap;
use shutdown::{Shutdown, SHUT_READ, SHUT_WRITE};

struct Inner {
    buffer: *mut u8,
    size: usize,
    pin: AtomicUsize,
    pout: AtomicUsize,
    shutdown: Shutdown,
}

impl Inner {
    fn new(size: usize) -> Self {
        let shutdown = Shutdown::new();
        Inner {
            buffer: unsafe { heap::allocate(size, 1) },
            size: size,
            pin: AtomicUsize::new(0),
            pout: AtomicUsize::new(0),
            shutdown: shutdown,
        }
    }
    pub fn unread(&self) -> usize {
        let pout = self.pout.load(Ordering::Acquire);
        let pin = self.pin.load(Ordering::Acquire);
        pin - pout
    }
}

impl Drop for Inner {
    fn drop(&mut self) {
        unsafe { heap::deallocate(self.buffer, self.size, 1); }
    }
}

unsafe impl Sync for Inner {}

/// What can we do when operations on `Sender` or `Receiver` would block.
///
/// 1) Just return `Err(ErrorKind::WouldBlock)` immediately; or
/// 2) sleep for some milliseconds.
///
/// The default on `Sender` and `Receiver` is Sleep(10).
pub enum WouldBlock {
    Nonblock,
    Sleep(u64),
}

/// The fifo sender. It's `Send` but `!Sync`.
pub struct Sender {
    _private: (),
    inner: Arc<Inner>,
    would_block: WouldBlock,
}

/// The fifo receiver. It's `Send` but `!Sync`.
pub struct Receiver {
    _private: (),
    inner: Arc<Inner>,
    would_block: WouldBlock,
}

impl AsRef<Inner> for Sender {
    fn as_ref(&self) -> &Inner {
        &self.inner
    }
}

impl AsRef<Inner> for Receiver {
    fn as_ref(&self) -> &Inner {
        &self.inner
    }
}

impl Drop for Sender {
    fn drop(&mut self) {
        self.inner.shutdown.shutdown(SHUT_WRITE);
    }
}

impl Drop for Receiver {
    fn drop(&mut self) {
        self.inner.shutdown.shutdown(SHUT_READ);
    }
}

unsafe impl Send for Sender {}
unsafe impl Send for Receiver {}
impl !Sync for Sender {}
impl !Sync for Receiver {}

/// Construct the fifo with capacity as `size.next_power_of_two()`,
/// and return the `Sender` and `Receiver` pair connected with that.
pub fn fifo(size: usize) -> (Sender, Receiver) {
    let size = size.next_power_of_two();
    let inner = Arc::new(Inner::new(size));
    let sender = Sender {
        _private: (),
        inner: inner.clone(),
        would_block: WouldBlock::Sleep(10),
    };
    let receiver = Receiver {
        _private: (),
        inner: inner,
        would_block: WouldBlock::Sleep(10),
    };
    (sender, receiver)
}

impl Sender {
    pub fn set_would_block(&mut self, would_block: WouldBlock) {
        self.would_block = would_block;
    }

    fn do_write<T>(&mut self, bytes: usize, mut cp_data_to: T) -> io::Result<usize>
        where T: FnMut(&mut [u8], usize, usize) -> io::Result<usize>
    {
        let inner: &Inner = &self.inner;
        let mut pin: usize;
        let mut pout: usize;
        let mut avaliable: usize;
        loop {
            pin = inner.pin.load(Ordering::Relaxed);
            pout = inner.pout.load(Ordering::Acquire);
            avaliable = min(inner.size - (pin - pout), bytes);
            if avaliable > 0 {
                break;
            } else {
                if inner.shutdown.shuted(SHUT_READ) {
                    return Err(io::Error::new(io::ErrorKind::BrokenPipe, "closed on read end"));
                }
                if let WouldBlock::Sleep(sleep) = self.would_block {
                    thread::sleep(time::Duration::from_millis(sleep));
                } else {
                    return Err(io::Error::new(io::ErrorKind::WouldBlock, "buffer is full"));
                }
            };
        }
        let start_pos = pin & (inner.size - 1);
        let mut dest = unsafe { slice::from_raw_parts_mut(inner.buffer, inner.size) };

        let exactly_write = cp_data_to(&mut dest, start_pos, avaliable)?;
        inner.pin.store(pin + exactly_write, Ordering::Release);
        Ok(exactly_write)
    }
}

impl io::Write for Sender {
    fn write(&mut self, bytes: &[u8]) -> io::Result<usize> {
        let bytes_len = bytes.len();
        let copy_data_to = move |dest: &mut [u8], start_pos: usize, avaliable: usize| {
            let len_to_write_1 = min(dest.len() - start_pos, avaliable);
            let len_to_write_2 = avaliable - len_to_write_1;
            dest[start_pos..(start_pos+len_to_write_1)].copy_from_slice(&bytes[0..len_to_write_1]);
            dest[0..len_to_write_2].copy_from_slice(&bytes[len_to_write_1..avaliable]);
            Ok(avaliable)
        };
        self.do_write(bytes_len, copy_data_to)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl Receiver {
    pub fn set_would_block(&mut self, would_block: WouldBlock) {
        self.would_block = would_block;
    }

    fn do_write<T>(&mut self, bytes: usize, mut cp_data_from: T) -> io::Result<usize>
        where T: FnMut(&[u8], usize, usize) -> io::Result<usize>
    {
        let inner: &Inner = &self.inner;
        let mut pin: usize;
        let mut pout: usize;
        let mut avaliable: usize;
        loop {
            pin = inner.pin.load(Ordering::Acquire);
            pout = inner.pout.load(Ordering::Relaxed);
            avaliable = min(bytes, pin - pout);
            if avaliable > 0 {
                break;
            } else {
                if inner.shutdown.shuted(SHUT_WRITE) {
                    return Ok(0);
                }
                if let WouldBlock::Sleep(sleep) = self.would_block {
                    thread::sleep(time::Duration::from_millis(sleep));
                } else {
                    return Err(io::Error::new(io::ErrorKind::WouldBlock, "buffer is empty"));
                }
            }
        }
        let start_pos = pout & (inner.size - 1);
        let src = unsafe { slice::from_raw_parts_mut(inner.buffer, inner.size) };
        let exactly_read = cp_data_from(&src, start_pos, avaliable)?;
        inner.pout.store(pout + exactly_read, Ordering::Release);
        Ok(exactly_read)
    }
}

impl io::Read for Receiver {
    fn read(&mut self, bytes: &mut [u8]) -> io::Result<usize> {
        let bytes_len = bytes.len();
        let copy_data_from = move |src: &[u8], start_pos: usize, avaliable: usize| {
            let len_to_read_1 = min(src.len() - start_pos, avaliable);
            let len_to_read_2 = avaliable - len_to_read_1;
            bytes[0..len_to_read_1].copy_from_slice(&src[start_pos..(start_pos+len_to_read_1)]); 
            bytes[len_to_read_1..avaliable].copy_from_slice(&src[0..len_to_read_2]);
            Ok(avaliable)
        };
        self.do_write(bytes_len, copy_data_from)
    }
}